
TEPLA

(University of Tsukuba

Elliptic Curve and Pairing Library)

Manual

Laboratory of Cryptography and Information Security
University of Tsukuba

January 22, 2013
ver. 1.0.0

1

1 Overview of TEPLA

TEPLA (University of Tsukuba Elliptic Curve and Pairing Library) is a software
library for development of applications or systems of cryptographic algorithms
using pairings. Pairing is a bilinear map which has 2 inputs and 1 output. Our
library implements the functions necessary for pairings, such as calculation of
points on elliptic curves, calculation of elements on finite fields, etc.

TEPLA is written in C language and allows the use of pairing-based cryp-
tography in different platforms.

TEPLA supports the following calculations:

• Calculations on Finite Fields (prime field of 254 bits, quadratic, 6th and
12th extension fields)

• Calculations on Elliptic Curves (Barreto-Naehrig (BN) curves)

• Calculations of Pairings (Optimal Ate Pairing on BN curves)

TEPLA provides the following functions:

• Calculations on Finite Fields (prime field of 254 bits, quadratic, 6th and
12th extension fields)

– Addition, Subtraction, Multiplication, Inversion, Square Root, Ex-
ponentiation, Random Elements

• Calculations on Elliptic Curves (Barreto-Naehrig (BN) curves)

– Addition, Scalar Multiplication, Random Points, Map-To-Point

• Calculations of Pairings (Optimal Ate Pairing on BN curves)

These functions are described in sections 4, 5 and 6.

TEPLA can run on several platforms. Currently, it is confirmed to work on
Microsoft Windows, Apple Mac OS X and Linux. A detailed environment for
each platform is available in section 2.

TEPLA is open source and distributed under the license similar to 3-Clause
BSD License. The license add some descriptions about patent rights. The
library is available for download at the web of the web of Laboratory of Cryp-
tography and Information Security, University of Tsukuba 1 .

1http://www.cipher.risk.tsukuba.ac.jp/tepla/

2

Copyright (c) 2013, Laboratory of Cryptography and Informa-
tion Security, University of Tsukuba

All rights reserved.

Redistribution and use in source and binary forms, with or with-
out modification, are permitted provided that the following condi-
tions are met:

Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copy-
right notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distri-
bution.

Neither the name of the Laboratory of Information Security, Uni-
versity of Tsukuba nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.

There is no guarantee that the algorithms used in the software
are not covered by patent rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLD-
ERS AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

3

Applied libraries and algorithms for each calculation in TEPLA are the
following:

• Finite Field: 254 bits prime field , quadratic, 6th and 12th extension field

– Calculations on Prime Field: GMP Library

– Calculations on Extension Fields: Method by Beuchat et.al.2

• Elliptic Curve: Barreto-Naehrig Curves

– Scalar Multiplication on G1: Method on the book by Hankerson et.
al. 3

– Scalar Multiplication on G2: Method by Nogami et. al. 4

– Map-To-Point: Method on IEEE P1363.3 Draft5

– Hash functions used in Mat-To-Point: OpenSSL Library

• Optimal Ate Pairing

– Calculation of Pairings: Method by Beuchat et. al. 6

Barreto-Naehrig Curves are expressed as y2 = x3 + b, b ∈ Fp. Characteristic
p and order r are given based on parameter z as p = 36z4 + 36z3 + 24z2 + 6z+ 1
and r = 36z4 + 36z3 + 18z2 + 6z + 1. z = 262 − 254 + 244 is used in TEPLA.

2 Install TEPLA

Please refer to the Install Manual for installing TEPLA. GMP Library and Open
SSL are required.

TEPLA is confirmed to run on the following platforms:

• Windows

OS Windows 7 Professional SP1 (64bit)

C compiler Visual C++ 2010

GMP (MPIR 2.6.0)

OpenSSL 1.0.1c

2Beuchat, J.L., Daz, J.E.G., Mitsunari, S., Okamoto, E., Rodrguez-Henrquez, F., Teruya,
T. ”High-Speed Software Implementation of the Optimal Ate Pairing over Barreto-Naehrig
Curves”. In Proc. of Pairing 2010. LNCS, vol. 6487, pp. 21-39., 2010

3Hankerson, Darrel, Menezes, Alfred J., Vanstone, Scott , ”Guide to Elliptic Curve Cryp-
tography”, Springer, January 2004

4Nogami, Yasuyuki, Sakemi, Yumi, Okimoto, Takumi, Nekado Kenta, Akane Masataka,
Morikawa, Yoshitaka, ”Scalar Multiplication Using Frobenius Expansion over Twisted Elliptic
Curve for Ate Pairing Based Cryptography”, IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences, Volume E92.A, Issue 1, pp.182-189 (2009).

5IEEE P1363.3/D6, ”Draft Standard for Publickey Cryptography”
6Same as above 2

4

• Linux

Kernel 2.6.18-308.8.1.el5 (Cent OS)

C compiler gcc 4.1.2

GMP 5.0.5

OpenSSL 0.9.8e-fips-rhel5

• Mac OS X

OS 10.6.8 (Snow Leopard)

C compiler gcc 4.2.1

GMP 5.0.4

OpenSSL 0.9.8r

3 Declaration of Header (tepla/ec.h)

The header must be declared in the source code to use TEPLA.

#inc lude <t e p l a / ec . h>

4 Initialization of Finite Fields

4.1 field init(Field f, const char *param);

Initialize a finite field to use. There is no return value;

F i e ld f ;
f i e l d i n i t (f , ” bn254 fp ”) ;

The following four finite fields can be used:

• bn254 fp

• bn254 fp2

• bn254 fp6

• bn254 fp12

Each parameter is a prime field, quadratic, 6th and 12th extension field,
respectively.

4.2 field clear(Field f);

Clear the finite field. There is no return value.

5

4.3 field get name(const Field f);

Get a name of current finite field. Returned value is an array of char type.

4.4 field get char(const Field f);

Get a value of characteristics of the finite field. Returned value is an array of
mpz t type.

4.5 field get degree(const Field f);

Get a value of degree of the finite field. Returned value is int.

5 Calculations on Finite Fields

Although quadratic, 6th and 12th extension fields are defined and implemented
separately, the following functions can be used regardless of differences between
them.

5.1 element init(Element x, const Field f)

Initialize an element of the finite field. Input value x of Element type is initial-
ized as an element on input finite field f.

5.2 element clear(Element x)

Clear the element. Input value x of Element type is cleared by this function.

5.3 element set(Element x, const Element y)

Set a value of an element. Input value y of Element type is set to x of Element
type.

5.4 element set str(Element x, const char *str)

Set a value of an element. Input string str is set to x of Element type.

5.5 element get str(char *str, const Element x)

Get the value of the element. Contents of input value x of Element type is set
to string str.

An element is set as string of hexadecimal number. If the element is on
extension field, each element is set using a space

5.6 element set zero(Element x)

Input value x of Element type is set to zero.

6

5.7 element set one(Element x)

Input value x of Element type is set to one.

5.8 element add(Element z, const Element x, const Ele-
ment y)

Add two elements. Input value x and y of Element type are added. The result
value is set to z of Element type.

5.9 element neg(Element z, const Element x)

Obtain an inverse element on addition. An inverse element of input value x of
Element type is set to z.

5.10 element sub(Element z, const Element x, const Ele-
ment y)

Subtract input value y of Element type from input value x of Element type.
The result value is set to z of Element type.

5.11 element mul(Element z, const Element x, const Ele-
ment y)

Multiply two elements. Input value x and y of Element type are multiplied.
The result value is set to z of Element type.

5.12 element sqr(Element z, const Element x)

Square an element. Input value x of Element type is squared. The result value
is set to z of Element type.

5.13 element inv(Element z, const Element x)

Obtain an inverse element on multiplication. An inverse element of input value
x of Element type is set to z.

5.14 element pow(Element z, const Element x, const mpz t
exp)

Exponentiate an element. Input value x of Element type is exponentiated using
exp of mpz t type. The result value is set to z of Element type.

7

5.15 element sqrt(Element z, const Element x)

Calculate an square root of an element. Input value x of Element type is square
rooted. The result value is set to z. If x has square root, 1 of int type is returned.
If not, 0 of int type is returned.

5.16 element is zero(const Element x)

Check if an element is zero. If input value x of Element is zero, 1 of int type is
returned. If not, 0 of int type is returned.

5.17 element is one(const Element x)

Check if an element is one. If input value x of Element is one, 1 of int type is
returned. If not, 0 of int type is returned.

5.18 element is sqr(const Element x)

Check if an element has square root. If input value x of Element type has square
root, 1 of int type is returned. If not, 0 of int type is returned.

5.19 element cmp(const Element x, const Element y)

Compare two elements. If input value x and y are same, 0 of int type is returned.
If not, 1 of int type is returned.

5.20 element random(Element x)

Choose a random element, and set to x.
The function of random number generation on GMP is used for the function.

5.21 element to oct(unsigned char *os, size t *size, Ele-
ment x)

Translate an element to an array of byte type. Input value x of Element type
is translated to byte sequence then set to an array of unsigned char type os.
Length of the array is set to an array size* of size t type.

5.22 element from oct(Element z, const unsigned char *os,
size t size)

Translate an array of byte type to an element . Input array of unsigned char
type os is translated to element then set to x of Element type. Length of the
array is set to an array size of size t type.

8

5.23 element get str length(const Element x);

Translate an element to string of hexadecimal number, then obtain a length of
the string. The length is returned as int type.

5.24 element get oct length(const Element x);

Translate an element to an array of byte type, then obtain a size of the array.
The size is returned as int type.

6 Setting of Elliptic Curve

6.1 curve init(EC GROUP ec, const char *param);

Initialize an elliptic curve to use. There is no return value;

EC GROUP ec ;
c u r v e i n i t (ec , ” ec bn254 fp ”) ;

The following elliptic curve can be used:

• ec bn254 fp

• ec bn254 tw

The parameter ”ec bn254 fp” means the BN curve on prime fields. The
parameter ”ec bn254 tw” means the sextic twist of ”ec bn254 fp” on quadratic
extension fields.

6.2 curve clear(EC GROUP ec);

Clear the elliptic curve. There is no return value.

6.3 curve get name(const EC GROUP ec);

Get a name of current elliptic curve. Returned value is an array of char type.

6.4 curve get order(const EC GROUP ec);

Get an order of the subgroup on current elliptic curve. Returned value is an
array of char mpz t type.

7 Calculations on Elliptic Curves

7.1 point init(EC POINT p, const EC GROUP ec)

Initialize a point of the elliptic curve. Input value p of EC PONIT p type is
initialized as a point on input elliptic curve ec.

9

7.2 point clear(EC POINT p)

Clear the point. Input value p of EC PONIT is cleared by this function.

7.3 point set(EC POINT P, const EC POINT Q)

Set a value of a point. Input value Q of EC PONIT type is set to P of
EC PONIT type.

7.4 point set str(EC POINT P, const char *s)

Set a value of a point. Input string str is set to P of EC PONIT type.

7.5 point set xy(EC POINT P, const Element x, const El-
ement y)

Set a value of a point. Input value x, y of Element type is set to P of EC PONIT
type as P=(x,y).

7.6 point set infinity(EC POINT P)

Input value P of EC PONIT type is set to the point at infinity.

7.7 point get str(char *s, const EC POINT P)

Get a value of the point. Contents of input value P of EC PONIT type is set to
string s. A point is set as string of two elements with hexadecimal expression.
two elements is devided by comma, and put between ”[]”.

7.8 point add(EC POINT R, const EC POINT P, const
EC POINT Q)

Add two points. Input value P and Q of EC PONIT type are added. The result
value is set to R of EC PONIT type.

7.9 point dob(EC POINT Q, const EC POINT P)

Double a point. Input value P of EC PONIT type is doubled. The result value
is set to Q of EC PONIT type.

7.10 point neg(EC POINT Q, const EC POINT P)

Calculate -P from input value P of EC PONIT type, then set to Q of EC PONIT
type.

10

7.11 point sub(EC POINT R, const EC POINT P, const
EC POINT Q)

Subtract input value Q of EC PONIT type from input value P of EC PONIT
type. The result value is set to R of EC PONIT type.

7.12 point mul(EC POINT Q, const mpz t s, const EC POINT
P)

Calculate scalar multiplication of a point. Calculate sP with input value P of
EC PONIT type and input value s of mpz t. The result value is set to Q of
EC PONIT type.

7.13 point is infinity(const EC POINT P)

Check if a point is a point at infinity. If input value P of EC PONIT type is a
point at infinity, 1 of int type is returned. If not, 0 of int type is returned.

7.14 point is on curve(const EC POINT P)

Check if a point is on the elliptic curve. If input value P of EC PONIT type is
on the elliptic curve, 1 of int type is returned. If not, 0 of int type is returned.

7.15 point cmp(const EC POINT P, const EC POINT Q)

Compare two points. If input value P and Q of EC PONIT type are some, 0 of
int type is returned. If not, 1 of int type is returned.

7.16 point make affine(EC POINT Q, const EC POINT
P)

Calculate affine translation of input value P of EC PONIT type. The result
value is set to Q of EC PONIT type.

7.17 point map to point(EC POINT P, const char *s, size t
slen, int t)

Input string s of an array of char type is mapped to a point on the elliptic
curve. slen is a length of the input string. The result value is set to P of
EC PONIT type. Hash function is used to calculate map to point with the
parameter of input value t of int type. The following parameters are available
for hash functions:

• 80

• 112

11

• 128

• 192

• 256

If the parameter is 80, SHA1 is used. SHA-224, SHA-256, SHA-384 and SHA-
512 are used with 112, 128, 192 and 254, respectively.

7.18 point random(EC POINT P)

Choose a random point on the elliptic curve, and set to P of EC PONIT type.
element random is called for random number generation in the function.

7.19 point to oct(unsigned char* os, size t *size, EC POINT
P)

Translate a point to an array of byte type. Input value P of EC PONIT type
is translated to byte sequence then set to an array of unsigned char type os.
Length of the array is set to an array size* of size t type.

7.20 point from oct(EC POINT P, const unsigned char
*os, size t size)

Translate an array of byte type to a point. Input array of unsigned char type os
is translated to element then set to P of EC PONIT type. Length of the array
is set to array size of size t type.

8 Operations on Pairings

8.1 pairing init(EC PAIRING p, char *param)

Initialize a pairing to use. There is no return value.

EC PAIRING p ;
p a i r i n g i n i t (p , ”ECBN254”) ;

The following pairing can be used:

• ECBN254

8.2 pairing clear(EC PAIRING p)

Clear the pairing. There is no return value.

12

8.3 pairing map(Element g, const EC POINT P, const
EC POINT Q, const EC PAIRING p)

Calculate pairing. Input value P and Q of EC PONIT type are used to calculate
pairing based on p of EC PAIRING type. The result value is set to g of Element
type.

8.4 pairing get order(const EC PAIRING p)

Get an order of the cyclic group used in the pairing p of EC PAIRING type.
Returned value is mpz t.

A Contributors

TEPLA is designed, developed, managed and translated by many contributors.
We appreciate their help.

• Eiji Okamoto

• Akira Kanaoka

• Naoki Kanayama

• Kazutaka Saito

• Alberto Moreno Tablado

• Kenta Ishii

13

